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Information Technology and Mathematics:
Opening New Representational Windows1,2

James J. Kaput

Educational Technology Center
Harvard Graduate School of Education

Department of Mathematics
Southeastern Massachusetts University

Introduction.

'Higher order thinking skills' are inevitably developed or exercised
relative to some discipline. Put simply, one cannot learn thinking without
thinking about something. The discipline may be formal or informal, be
represented or not represented within a school curriculum, or relate to a
wide variety of domains: mathematics, electronics, Logo programming,
summer camp recreation programming, Volkswagen engine repair,
meteorology, cognitive psychology, and so on. Moreover, the development
or exercise of the thinking skills may take place at differing levels of
generality - with differing levels of involvement with the knowledge base
comprising the discipline itself. Given the breadth of the issue, it would
be wise quickly to select a sector for attention.

As the title indicates, we have chosen mathematics as the discipline of
concern for this paper. But mathematics is not just any discipline. It is a
discipline which has often been regarded as embodying the essence of
thought, of logic, of abstract structure. It is also a /ampayein which the

1. We wish to acknowledge helpful conversations with Judah Schwartz
regarding the ideas of this paper - although he should not be held
accountable for all the views herein offered.
2. An earlier draft of this paper was presented at the Conference on
Computers and Complex Thinking, jointly sponsored by the Office of
Educational Research and Improvement and the Wisconsin Center for
Education Research, Washington, D. C., November, 1955.
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major features of other domains can be represented. It is not enough,
however, to acknowledge the dual nature of mathematics, as a body of
knowledge and as a language, because, as a body of knowledge,
mathematics contains both procedural as well as conceptual knowledge,
and these at various levels of abstractness (Hiebert, 1986).

And it is not merely a single language, but rather a network of
representational systems, which interlock not only with each other, but
interact differently with different kinds of mathematical knowledges as
well as with nonmathematical representation systems, such as natural
language and pictures, (Kaput, 19860. As a network of languages, it has
two interlocking functions, one as a tool to think with, and another as a
tool to communicate with. Failure to acknowledge the richness and
multi-faceted nature of mathematics has been a source of much
misstatement and overstatement regarding the relation among
mathematics, cognitive skills development, and information technology.

Having acknowledged the issue's real complexities, we will now go on to
use a series of concrete examples to illustrate how new uses of
information technology can profoundly influence the acquisition and
application of higher order thinking skills in or near the domain of
mathematics. Our concentration on aspects of mathematics that relate to
its representational function is based on the following twin beliefs.

Mathematics itself, as a tool of thought and communication, is
essentially representational in nature (Kaput, 1986a).

Information technology will have its greatest impact in
transforming the meaning of what it means to learn and use
mathematics by providing access to new forms of representation
as well as providing simultaneous access to multiple, linked
representations.

Our approach will be
(1) to describe a few examples of relatively novel software environments
from the representation perspective,
(2) to point to even more novel approaches to curriculum reform in
mathematics that will support the cultivation of newly appropriate higher
order thinking skills, and
(3) to relate these to research questions and educational policy issues as
yet unresoved.
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New Software, New Representations.

We will examine two existing pieces of software, one in geometry and the
other in algebra, and one software environment under development
intended to support learning of ratio and proportion in grades 4-9:

(A) The Geometric Su000sers, by Judah Schwartz and Michel Yerushalmy
(newly commercially available for current school microcomputers from
Sunburst Communications) is a collection of four programs that radically
change the relationship among the teacher, student, and plane geometry by
subtly changing the representational' character of geometric
diagrams/constructions.

(B) An algebra/graphing software environment has been developed in
prototype form by the same authors. Aspects of this software are being
developed independently in slightly different forms by several others,
including Richard Lesh's group at WICAT (Lesh, 1985, 1986) and Ronald
Wenger's group at the University of Delaware (Wenger, 1984). This
software makes accessible an entirely new geometric meaning for
operations on algebraic equations which has the potential for changing
how students think about solving algebraic equations and the relation
(often confusing) with operations on expressions.

(C) The ratio-proportion software is intendod (1) to "ramp" students
upward from their concrete, situation-bound representations of intensive
quantities (generalized rates) and operations on them, to more abstract,
flexible representations, and (2) to render explicit, hence more learnable,
the connections among different representations by making more than one
of several linked representations visible and useable simultaneously.

We shall now examine each of these learning environments in more detail.

A. Geometry .

The SuoDosers have three features, two central features and a third
support feature that utilize the technology. The first central feature is
the electronic straight-edge, compass. Anything Euclid allows can be done
quickly, cleanly. This has the facilitative effect analogous to that
provided by word processors. One can create constructions much more
rapidly and easily than with the crude instruments of paper and pencil,
straight-edge and compass. Just as the real power of word processors,
especially those tailored for use by students, has not yet been adequately
plumbed, we are not yet certain what the ultimate meaning of this kind of

6
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feature actually can be. It is likely to appear all over the software
landscape with a variety of improvements and elaborations.

However, by far the most important and novel feature of the Sur) posers is
its second major feature - the ability to remember a construction as a
proceatre that can then be executed an ether (ejects chosen or
constructed by the student Thus an observed regularity in a given diagram
can be investigated regarding its generality does it hold more generally,
and if so, hew generally? Having constructed the three medians of your
initial triangle and noticed that they all intersect at a point, you are
strongly pulled to see if this holds for other triangles, including SOM9 that
perhaps lack the regularity of the first one. (See Figure 1.)

We have already seen students produce new theorems, theorems that have
not appeared in the literature dating back over two thousand years (Kidder,
1965). One is not limited to the simple constructions that one's unsteady
hand and limited patience allow or that the clay, sticks and feathers of
earlier times allowed.

There is an important representational breakthrough here, embodied in the
repeat feature: the type/token relationship between a particular diagram
or picture and the class of geometric objects that it may be presumed to
represent has been fundamentally altered. Until now, a particular
construction could only represent itself - It could not act as the token of a
general type in a principled way. Any generality of the resulting figure
was strictly a matter of assertion on the part of the creator or observer
of the item. This is in strong contrast to the wag algebraic entities
represent numbers or quantitative relationships: V .:. 2X represents, with
no ambiguity and in a principled way (via specification of the domain of X),

7
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a potentially infinite collection of number pairs.

5

A third feature supporting the other two is a measuring and calculating
utility that allows students to measure lengths, areas, and angles as well
as to compare and calculate with the resulting measures. However,
accuracy is limited to two decimal places (necessity turns out to be a true
virtue in this case) so that measurement can play only a suggestive
function, not a conclusive one.

The combination of the three briefly described features changes - or can
change the experience of doing plane geometry. No longer need it be the
tightly controlled museum trip, where the student is asked to *prove the
carefully displayed artifacts of history, and where the style and substance
of "proof' resembles true contemporary mathematical investigation about
as much as the minuet resembles contemporary dance.

What, more specifically, is now different in practical terms from the
museum trip? It is important to move beyond simple romantic cnes of
"power to the student" or vague claims abed the learning of higher order
thinking skills. We need substantive and detailed specification regarding
what should be done and how it might be done. Intensive work on this type
of issue is underway at ETC, the foundations for which have been provided
by Michel Yerushalmy's doctoral dissertation (Yerusholmy, 1986).

One thing that can be said concerns a radical expansion of the kinds
of rational activities supported by this type of software
environment in comparison with the traditional geometry learning
environment.

Consider the following scenario, closely modeled w actual in-class
events. (All these results were discovered by a single class in a hour's
quiz in which they were asked to tell all they believed to be true regarding
the midsegments of a triangle.)

Having built the three midsegments of a triangle, (see Figure 2) and
noticed by judicious repetition on other triangles that the original triangle
is now subdivided into four triangles, each congruent to the original and
having area one fourth of the original and perimeter one half the original,
one may now wish to generalize the notion of midsegment by subdividing
the sides of the triangle into three rather than two pieces, (see Figure 3).
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Figure 2

Figure 3 8

6

Or one might move to generalize the idea to squares and other
quadrilaterals - see Figure 4. Do the four midsegments of a kite (perhaps
an asymmetric kite) always form a parallelogram??

I

E

The point here is merely to illustrate the rich texture of the possibilities
to set the stage for more general discussion of such an environment. The
traditional geometry course was presumed to teach deductive thinking and
the logic of axiomatic systems. It was also presumed to teach something

9
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about two dimensional space. Few researchers today would agree that
these goals are commonly met (Wirszup, 1976; Yersushalmy, 1966).
Indeed, in the typical geometry course students make few constructions on
their own initiative, the deductions drawn from those constructions are
almost always directed to an externally teacher or text-provided goal
statement, and they almost never are allowed to explore the consequences
of altering an axiom system. Contrast that situation with the one hinted
at above.

(1) The epistemological context is redefined: Epistemological
authority no longer is the exclusive purview of teacher and text,
but is provided by proof, convincing proof. Given the ease with
which constructions can be built, students immediately move outside the
narrow range of the results normally presented in the museum's display
cabinets, so that the truth of conjectures quickly becomes problematic.
Another epistemological consequence of the ease with which
constructions can be made and repeated is the devaluing of the currency of
examples - "proof by example; after experience in this environment, loses
its force, and examples come to be seen in their real logical role, as
conjecture exploration devices. This increased "felt need" for truly
functional proof has been consistently observed to develop during the
second half of the academic year in classes where the software has played
a central role.

(2) The kinds of rational skills called into play are vastly
broader in scope and much more representative of those
exercised by a person actually doing mathematics. In particular,
since the making of conjectures and then the exploring of conjectures has
been so greatly facilitated, a whole range of ancillary and support skills
can be cultivated, especially those connected with varieties of inductive
reasoning. These include:

(a) choosing confirming and disconfirming examples wisely, as
well as learning the logical role of examples;
(b) systematic simplification to expose the logical core of a
particular conjecture (especially important because of the
richness of the constructions now possible);
(c) systematic variation in the parameters of a particular
construction or entity to which the construction is to be applied,
including numerical incrementing of parameters to support
inductive generalization.

(3) Following from the redistribution of epistemological
authority is a redistribution of social authority and personal
responsibility. Students can now become sources of knowledge as well

10



Kaput Opening Representational Windows 8

as sources of important questions. The demands upon the teacher, both
intellectually as well as managerially, can be substantial. A variety of
support materials, written and cybernetic, will be needed. In addition to
requiring much more knowledge of geometry, and confidence in the general
power of that knowledge, a whole new set of intellectual and pedagogic
skills is called for, skills based on an understanding and appreciation of
the realities of doing one's own mathematics; rether that reciting
SO176 8 elses mathemetics The teacher training implications of this
shift are enormous.

B. Algebra

Suppose you have before you a linear algebraic equation in one variable,
say

X+1=7-2X
In solving this equation one adds or subtracts numerical constants from
both sides, multiplies and divides both sides by numerical constants, and
adds or subtracts linear terms from both sides. The standard argument
behind this strategy is based on conditionally equivalent equations: the
solution set is unaffected by such actions, provided one is careful to do
the same thing to both sides. Much of this argument is lost on the
majority of students because of its essential abstractness, leaving them
with a deep and pervading confusion regarding what can be done with
equations as opposed to what can be done with expressions, a confusion
that rears its ugly head when they attempt to deal with rational algebraic
expressions. And there is no easily accessible distinction between the
two types of actions.

Suppose one could graph the two sides of the equation on the same
coordinate axes, sag

y1 = X + 1 and yR = 7 2X

representing the two sides, respectively. Then, as one subtracts 1 from
both sides, the two graphs each shift vertically downward by that amount

but the X coordinate of the intersection does net CAW (See Figures
5a,b.)

11
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(n)

FIGURE 5

Similarly, if one adds 2X to both sides, the slopes of the respective graphs

change, but the the X coordinate of the intersection does not change. (See

Figure 6a.)

(e)

Figure 6

12
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And finally, if we multiply both sides by a constant, 1/3, we reach the
standard feral,

X = 2

which, graphically, is the intersection of a diagonal and a horizontal line
(Figure 6b).

We are here doing more with Descartes' remarkable invention than was
previously feasible simply because of the quickness and ease by which the
graphical representations are ,.enerated. The essence of this software is
to provide a new representation, a visual representation, of actions on
equations. With this new representation come new meanings for such
events es the introduction of extraneous roots. When one multiplies both
sides of the linear equation

X = 6 - 2Y.

by X, the lines are transformed into parabolas, the graphs of
YL = X2 and YR = 6X 2X2

which no longer need intersect at a single point! (See figures 7e,b.) One
can literally seethe extraneous root come into existence.

(e)

x

R=
6-2X

Figure 7

On the other hand, if one combines like terms on one side of an equation or
does arithmetic, the graphs of the equations do not change at MI. One is
performing actions en evressiefts, net 901817017g Actions on expressions
do not change their graphs.

And on the other hand, one can initiate changes in the opposite direction:
from the graphical to the algebraic. Hence one can modify equations by
acting on their geometric representations - translating, 'unbending'
(dividing an equation through by x), and so on, with the goal of tranforming

13
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the graph of the original equation into its 'canonical'
diagonal-crossing-horizontai form. Naturally, a readout is available
that one can observe the algebraic consequences of one's geometric ai:uons.
A fuller environment will contain means by which one can support
predictions regarding the effects of actions across represeAations by
appropriately hiding and uncovering such.

We are a long way from understanding how to exploit this new
representational tool pedagogically, but, given an appropriate curriculum,
w: hue every reason to expect it to have significant impact on the way
students think about equations and expressions. Indeed, we have given
visual meaning to conditions on expressions more generally: equality is
represented by the X-coordinate of the intersections of graphs (which can
be further highlighted via a projection to the X-xis), but inequality
conditions likewise have visual meaning, as intervals on the X axis
corresponding to intervals where one side's graph is above or below the
others graphically. We have also given visual meaning to °aims on

conditions, which should further alter the way students think about
equations and inequalities. These are likely to assume a new concreteness
and reality in the same way and for the same reasons thot Gauss' invention
of the visual representation of the complex numbers gave the latter an
acceptability among mathematicians that they had previously lacked.

They could now see them act/ also see their acticas cc them

C. Multiple, Dynamically Linked Representations for Ratio Reasoning.

Current mathematics education literature reveals a strong consensus on
the sources of student inability to solve multiplication and division word
problems, especially those involving intensive quantities (Schwartz, 1984;
Kaput, 1985). (For our purposes here, one can think of an intensive quantity
as a ratio or per quantity,' which also includes such quantities as rates,
e.g., miles/hr.)

The conclusion of much research is that students lack suitably rich and
flexible models of these operations and intensive quantities, and are thus
unable to recognize situations, except in the most well rehearsed contexts,
in which these mathematical concepts apply (Fischbein, 1985; Greer &
Mangan, 1984; A. Bell, Fischbein & Greer, 1984; Usiskin & M. Bell, 1983;
Greer, in press). Other research in both the problem solving and rational
number literature (e.g., Lesh, 1985; Lesh, et al, in press; Behr, et al,
1983), as well as in the algebra learning literature (Clement, 1982;

14
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Clement, et el, 1981; Kaput & Sims-Knight, 1983) has shown the depth of
student difficulty in translating concepts between different
representations within mathematics, es well es in translating quantitative
relationships into mathematics.

One research teem at the Educational Technology Center is in the process of
developing o series of dynamically linked representations for intensive
quantities that would support a variety of actions in such a way that a
student could see the results of marfipulations in one representation ramify
across other simultaneously visible representations in a multiple window
environment. This environment is being implemented on a Macintosh, which
provides the necessary graphics and computing power as well as a user
interface that supports, vie the mouse-based manipulation of screen
objects, the necessary kinesthetic reality to the manipulations of the
screen objects.

The full environment consists of four representations of intensive
quantities, which, for purposes of illustration, we will assume to be the
ratio between the number of cars and trucks produced by o factory, say a
ratio of 5 to 3, respectively. These are:

(1) iconic representations, the simplest of which consists of a
window tesselated with rectangular boxes, each of which
contains 5 of one kind of icon and 3 of another;
(2) a numerical, tabular representation, with one column labeling
the number of cars and the other the number of trucks;
(3) o coordinate graphical representation with one axis
representing the number of cars and the other the number of
trucks; and
(4) a "quantity calculator" that allows one to do arithmetic on
quantities (numbers with referents) with the referents of the
quantities appropriately tracked during the calculations.

Three of these coordinated representations are visible simultaneously
when desired, so that the consequences of actions in one can be viewed in
the others. Given, for example, the cars-trucks situation, the student
begins by constructing en iconic representation of the intensive quantity by
picking en apps apriate number of car and truck icons from a menu, putting
these into o box, and then systematically filling the icon window with such
boxes, each of which contains 5 cars and 3 trucks. As the student adds
boxes in the iconic representation (by clicking on MORE), the numerical data
table likewise fills out in coordinated fashion, and corresponding points
are added automatically on the coordinate graph. (See Figure 8.) This
initial default condition can be altered, however, by choosing to hide, in

15
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either or both of the other representations, the consequences of adding
icons in the icon window.

Fiore 8

0100
41,P4
min
414747

4.0 5 CARS / 3 TRUCKS

*

*TRUCKS * CARS

0 0

3 5

6 10

RS

0 1

I

10 TRUCKS

Similarly, the student can initiate actions in either of the other two
representations and inspect (perhaps after first hiding) the consequences
of these actions in any of the other representations. The "virtual
infinitude' of available representational items also helps attack a most
pervasive difficulty students have with such ratio situations: a failure to
appreciate the typicality, or representativeness, of the 5 to 3 ratio. We
believe that this may also be tied to a lack of cognitive models for the
critically important idea of variable, so the software attacks this serious
and well documented curricular and pedagogical problem as well.

We can also provide for traditional "missing value" tasks across
representations: For example, the question "How many trucks are produced
when 25 cars are producedr can be approached in each representation. In
the iconic representation the student can be asked to decide how many
truck icons are needed to fill the appropriate number of boxes. In the data
table, the question amounts to filling in a missing entry, and in the graph it
amounts to naming a point and its coordinates or naming a place on the
truck axis that corresponds (via a function-like mapping) to 25 on the car
axis.
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One can similarly cross representations in other traditional proportional
reasoning activities, e.g., ratio comparisons. If experience is any guide,
however, the environment will suggest a whole new generation of ratio and
proportional reasoning activities which are not feasible in a static paper
and pencil-like environment.

Fri our purposes here, this software environment renders three very
important goals of mathematics education far more attainable than
previously:

1. By presenting a family of iconic representations varying in
concreteness (only one was illustrated above) one can accomplish
three important subgoals:
(a) provide a variety of beginning-level representations that
increase the chance of linking with a student's existing, but
primitive cognitive representations;
(b) provide schematic representations that allow for a closer fit,
hence more cognitively accessible representations, for differing
problem situations, including the important differences between
discrete and continuous quantities; and, most importantly,
(c) expose, through multiple instantiation and by tying with more
general and abstract representations (i.e., the coordinate graph),
the deeper mathematical commonalities that underly superficially
varying situations.
2. By making visually explicit the relationships between different
representations and the ways that actions in one have
consequences in the others, the most difficult pedagogical and
curricular problem of building cognitive links between them
becomes much more tractable than when representations could be
tied together only by clumsy, serial illustration in static media.
3. By providing a series of carefully chosen representations that
begin with the students' primitive and inflexible ones and ramp
upward to ever more powerful and abstract mathematical ones, a
new level of longitudinal coherence in the mathematics curriculum
is possible, especially as those more powerful representations are
introduced in earlier grades and used to represent fundamental
mathematical ideas such as ratio appearing in those earlier
grades. In the case at hand, we explicitly chose to represent the
idea of ratio as the slope of a line in a coordinate graph, thereby
providing the basis for natural extension later to nonlinear
functions and the enormous corpus of mathematics beyond which
uses exactly the same set of representational tools.
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Building for the Future

The software environments described briefly in the previous section,
together with a variety of others of similar novelty and force, will help
shape the direction of mathematics teaching and learning in the near term
//given reasonable teacher training support, curriculum material support,
and hardware availability. Certainly the first item in our list, teacher
support, ranks highest in priority. Several years' experience with a wide
spectrum of teachers and schools with earlier versions of the Geometric
SuoDoser has helped confirm the obvious: Limited imagination, lack of
confidence, or a totalitarian or otherwise negative attitude towards
student intellectual endeavor can close the shades on any representational
window.

But the importance of the software environments for the purposes of this
paper lies in the direction in which they point and the new issues that they
raise.

Consider first geometry. The American geometry curriculum has long been
regarded as in need of reform (Wirszup, 1976; Yerushalmy, 1986). And the
new graphics capabilities of microcomputers make them an ideal medium in
which to carry out that reform at on levels (Fey, 1984). Logo-based
environments, constructed to include wisely chosen primitives, can help
students learn many geometric ideas now neglected and tie those ideas to
other domains, including, but not certainly not exclusively, mathematics.
The -PreSupposer; one of the Geometric Sucrgoser series, is aimed at
middle school students with a view to bringing active discovery to the
basic concepts of plane geometry. Similarly, highly flexible electronic
Geoboards will soon become available.

But beyond this we can list other areas in which these modest eight bit
beginnings might be extended without straining the likely capabilities of
the next generation of school microcomputers. While many of these
extensions are already being considered, the fact that they may be
attainable in software is not, of course, sufficient reason for creating
them. That is an educational decision.
1. Consider, for example, a non-Euclidean Supposer, where certain axioms
are selectively altered and one inspects the consequences on one's
constructions. The only way to learn about axiomatics is to investigate a
range of axiom systems. One cannot learn from a single instantiation. And
certainly not by laboriously, with crude tools, attempting to prove results
declared by authorities to be true, but requiring -proof" only because the
SO NO eutherffies request it.

18
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2. Or consider a locally Euclidean Supposer which supports constructions on
a manifold of constant curvature where one can vary not only the objects
on which the constructions Gre performed, but the curvature as well. What
happens as one decreases positive curvature and then passes from positive
(through zero curvature the flat plane) to negative curvature?
3. Or a Euclidean Supposer in three or even more dimensions?
4. Another way to extend the Supposer would be to allow the naming,
concatenating, and embedding of constructions, treating them as
building-block procedures, procedures which can take arguments as well.
In this case, one might name the midsegment construction seen earlier
(Figure 2), and then, upon seeing its generolizability to trisegments
(Figure 3), define a new °SEG (n)* construction that for n = 2, 3 yields the
given constructions for triangles. The largest leaps in mathematical
power have historically and developmentally accompanied the systematic
naming and resultant reification of procedures and processes (Kaput,
1986b), and it would appear that entirely new understandings and
operations with geometric constructions could follow in this case as well.
5. Given sufficient memory (surely less than two megabytes), one could
support simultaneous accessibility of a range of primitive figure types so
that, for example, a result determined for triangles, could be examined for
validity among quadrilaterals where some surprising generalizations
occur. (See Figure 4 and Schwartz & Yerulshamy, in press, for a whole host
of such conjectures.) Very deep insights into the nature of planar space are
thus revealed.
6. A straightforward elaboration of the original environment would record a
series of constructions in a visible sequence, where either the
construction, or the objects on which they operate, are systematically
varied. Perhaps the next step would be to allow continuous variation of the
objects, yielding dynamic representations and new sources of insight
Klein's Erlanger Program concretized.
7. The whole area of coordinate geometry begs exploration. The only real
question is the choice of primitives. But this is the central design
question in mathematics software design.
8. Even more fascinating geometric issues arise if one allows the
coordinate system to vary while holding either the visual object or its
locus definition constant the best known such comparison involves
rectangular and polar coordinates, but others are possible (Kavanaugh,
1983).

The geometry list could be extended even farther, but instead, we shall
move on to extending our algebra ideas. A basic algebra question raised by
Pollack (1983), and echoed by Fey (1984) is What algebra is important to
know in a world where symbol manipulators are inexpensive and easy to

19
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use? Thinking in terms of the Mu Math model, education researchers have
begun to analyze the content of the existing algebra curriculum to
determine the root knowledge that is needed by a user first to decide what
to "punch in" and then to interpret what the machine outputs in return. New
curricular options based on symbol manipulators specifically designed by
educators for educational use, rather than by computer scientists for use
by algebra experts trained in the 50's, 60's, and 70's, suggest that this
question needs to be updated.

Consider, for example, a symbol manipulator with certain parsing and
grouping primitives built in, e.g., "combine like terms," "multiply," "factor
out ...," and so on. Suppose further that these primitives can be treated as
procedures that can be assembled into more complex procedures such as
"build a common denominator," and so on. Then "to do a set of exercises"
can be reinterpreted to mean build a procedure, or set of procedures, that
will solve the given set of problems.

There appear to be two fundamental virtues of this tools-based approach:
First, it respects the fact that the student will be living in a world where
such tools will be a way of life; and second, it will build exactly the kinds
of algebraic insight that a tool user will need. After all, imagine the kinds
of thinking needed to put together a procedure that will add pairs of
algebraic fractions, and especially imagine the reasoning and understanding
that goes into the testing and revision of the procedure to handle
troublesome cases where the procedure crashes on, say, a complex
fraction. Again, it appears that the central question is the choice of
primitives, including the primitives that control assembly of procedures.

Another example of this manipulable multiple representation approach in
currently available software is provided by "Math Path" (Kleiman, 1985).
Here the student or teacher can build, modify, and otherwise pedagogically
engage a machine-based representation of arithmetic and algebraic
expressions: an expression is represented as an appropriate comb; nation of
the four operations, each of which is an input-output device, joined
together by wires. When one inputs numerical values, they travel along the
wires as a mouse in a snake, passing through the various components and
eventually landing in an output bin. Depending on the activity engaged in.
the computer will display or hide a given machine's corresponding forn.cli
expression. Although relatively modest in scope, this software uses the
computers ability to provide a dynamic and manipulable set of procedr
representations that provide a new perspective on the structure of ft..' am
expressions. One can easily envision workbench extensions to allow more
complicated machine primitives (e.g., whole new classes of functions
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beyond the strictly rational) and new means for joining and manipulating
entire machines so that the act of combining (including composition) and
simplifying expressions can be represented. Indeed, such environments are
under construction as of this writing, and certain professional tools of this
genre are already available, e.g., STELLA (1986). This last example listed
is an entirely new type of modeling tool that uses any combination of
numeric, iconic, algebraic, and graphical representations, e.g., one can enter
data graphically via "freehand' drawing if one chooses.

The linked representation software environment for learning ratio and
proportion can likewise be extended to connect with algebra software. The
study of ratio and proportion can be regarded as the study of linear
patterns, and the representational tools used in that study, as already
indicated, can be applied far more broadly. Without going into detail, we
simply note that algebraic and graphical representations of ratio and
proportion can be introduced relatively early, con be tied to the concept of
variable, now very poorly handled in the school curriculum (Kaput,
Clement, & Sims-Knight, 1985), and be naturally extended to more general
functions. Similarly, looking to the earlier grades, students' impoverished
cognitive models of multiplication (limited mainly to repeated addition)
can be enriched by providing a much expanded set of visually accessible
meanings for multiplication that include combinatoric models, as well as a
variety of "acting across' models (Usiskin & Bell, 1983).

Another extension of tools-based software can be envisioned for
arithmetic algorithms. Through the use of elementary grouping and
decomposition primitives applied to Dienes-like screen objects linked to
formal representations, students are able to build their own algorithms for
the four basic operations on integers in a base ten placeholder system.
Extension to other bases is another tempting possibility an idea which,
when first suggested and tried in the 1960's, may have failed because of
the limited medium in which it was attempted. Think of it as an arithmetic
algorithm toolkit, or workbench for use in the elementary grades. Here the
student would have a horizontally split screen with a lower screen
consisting of formal representations of arithmetic statements (in an
adjustable base) and an upper screen consisting of a Dienes Blocks style of
representation paralleling and coordinated with that appearing below. The
student would be able to manipulate either side-of the screen and the
computer would track the corresponding changes in the opposite
representation. In such an environment a student could construct
'homemade' algorithms, eventually comparing them to the standard ones.
In fact, steps towards this type of environment have been taken by several
groups, but (to my knowledge) without the open character implied by the
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workbench metaphor. Again, the point is that learning environments need
to be drastically modified to prepare students for the tools-rich
environment that they will most certainly inhabit. The kinds of insights
into mathematical procedures appropriate for such a world need to be
reanalyzed, as do the means for learning such insights.

Reflections

Two fundamental characteristics pervade the current and projected
software ideas described in the previous sections. The first is a radical
enrichment in the kinds of rational activities associated with
learning and doing mathematics.

The kinds and levels of cognitive skills cultivated and exercised stretch far
beyond the norm of today's school mathematics classrooms. This may be an
especially important new development because of the parallel expansion of
intellectual activities that information technology tools seem to be
demanding in a wide range of professions and domains, e.g., spreadsheets
call for new forms of experimentation and generalization, and the
example-based data base world opened by new PROLOG systems likewise
seem to call for a new kind of cognitive skill in dealing with samples and
examples. incidently, the kinds of example manipulating skills fostered in
the Supposer environment seem to parallel the example-based thinking
needed in such new data-base systems.

The second fundamental characteristic of the new learning environments
that we have been discussing is the way that they are organized around
the student as on active agent using a potent tool for the
investigation of important mathematical ideas.

Indeed, it is not &long step from what has been briefly described to an
entire mathematics curriculum based on Tools, Workbenches, and
Challenges. The Challenges are environments where the student uses the
tools, and the Workbenches are environments where the student uses
carefully designed primitive tools and assembly procedures to build
specific cybernetic devices to solve problems in the Challenge
Environments. In fact the author and John Richards have outlined a system
of this type in some detail (Kaput & Richards, 1965).

Challenge environments are not herd to come by. The practical
mathematics education literature of the past thirty or more years is a
virtually unlimited repository of Challenge ideas, many of which are more
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congenial in a microcomputer setting than in their original formats. One
such example already mentioned is the Geoboard and the many activities
introducing not only mathematical ideas, but problem solving strategies
and systematic investigation techniques, e.g., control of variables in the
development of the Geoboard classic, Pick's Theorem.

But, of course, the cybernetic utopia is not yet at hand. Nor will anything
approaching imaginative, empowering use of information technology occur
without hard thinking and careful analysis on a broad set of research
agendas. These include rethinking teacher training and credentialing
processes. Consider, for example:
How much geometry does a teacher need to know to make confident,
intelligent use of a Supposer type of geometry learning enviraent,
especially given the newer options now opening up via the emergence of
new representational tools? What attitudes and understandings must such
a teacher have about the nature of mathematics, and about the nature of
learning? (See Yerushalmy, 1966, for an in-depth discussion of these
issues.

Another critical agenda item is the more complete parsing of the
cognitions associated with using microcomputers as tools in different
domains. And there is the recurring underlying question of how much sense
does it make to speak of -higher order thinking skills" as if they were
domain-transcendent? Are these theoretical artifacts or are they
psychological realities? And, given a new access to multiple
representations, might not new cognitive skills be called for?

These are not new questions. And many of them have been the subject of
extended study the general ones in cognitive psychology, and the domain
specific ones, for example, in fields such as mathematics education.
Information technology decisions are inevitably couched within the
political, economic and practical contexts that define the nature of
schools, the domains deemed proper subjects of study, the distribution of
the population expected to study them, and the depth to which they are to
be studied. At finer levels of detail, every last decision is both a
pedagogical and curricular one, and hence requires knowledge about the
structure of the domain, the structure of the mind involved with that
domain (including that mind's patterns of growth and development), and the
practical constraints in which that decision must be implemented. No
news here. These are nothing more than the traditional questions of
education research.

But I have the persistent intuition that the issues are more crisply drawn
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when the design and implementation of information technology-based
learning environments are involved. Larger issues, such as the locus of
epistemological authority, can take the form, for example, of whether or
not an omniscient and infallible tutor should preside over the environment.
At fine levels of detail, in the building of the Ratio-Proportion learp"-g
environment for example, we are forced to push earlier mathematics
education research to its limits regarding student understanding of
rational numbers, proportional reasoning, multiplication, division, and
graphical representations. Indeed, we have joined forces with other
research teams, e.g., the Rational Number Proportional Reasoning Project,
in order to use their voluminous and high quality data.

But perhaps a more interesting development is the extent to which new
general research questions in mathematics education are being raised by
this kind of application of information technology:

For example, does the simultaneous presence of manipulable linked
representations support the learning of translation skills
between those modes of representation?

Given that student inability to translate concepts, procedures, or
relationships across different representations is well documented and
widespread, this question is of vital importance, but couldn't be raised
until such learning situations became feasible and testable. And if such
skills do prove to be learnable in particular domains, to what extent might
they then be transferrable? Other, much more detailed mathematics
education questions also arise, but there is not the space here to develop
them (see Kaput, 1985).

Of Bulls, Beasts and Bugs

The previous section was intended to argue that information technology
cranks up virtually every traditional education issue in intensity and
immediacy, while simultaneously bringing many of those traditional issues
into bolder relief. Recall the classic argument of the cognitive modelers
that the process of instantiating one's theory in a computer program forces
a clarity and precision about one's hypotheses and their consequences that
informal modeling does not. In some sense, information technology seems
to hove a similar kind of forcing effect more broadly across the educational
scene. And we saw how it raises new issues as well. Moreover, it
challenges the hypotheses of carefully crafted research positions. For
example, what happens to the relevance of spatial ability research in the
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presence of graphics capabilities that supplant the previously required
cognitive actions? The phenomenon goes well beyond education. In
philosophy, for example, the traditional questions have either come to new
life, e.g., in epistemology, or have taken new forms, as with the mind-body
problem. Indeed, information technology is a bull in everybody's china
closet. Hence we should not shy away from its destabilizing effects in
education and instead treat them as the windows of opportunity that they
are.

Certain prophets of microcomputer doom in education are declaring the
curricular and pedagogical promise of information technology dead this
when more then half the microcomputers in schools hove been in
place less then two full academic gears! A bit like declaring the
fetus' life a failure at the first twinges of labor. Are the judgements being
made on the basis of the environment into which such would be born?
Indeed, we do not yet have any real idea of the nature of the beast, nor
whether or how it may come to change the environment.

Most serious observers of this new technology regard its novelty and
importance as measurable in terms of frequency of occurence as being on a
scale of centuries. Indeed, detailed studies of how microcomputers have
been used in education ore as close to being absolutely irrelevant to the
future of information technology in education as any studies could be at
least as factors that would inform policy. As marginally interesting recent
history, perhaps. The hardware technology present initially in the schools
is first-generation, crude, and without significant quantities of software
that uses the properties and potentials of the technology. Not even a single
K-12 computer based curriculum exists in the schools (although the WICAT
system will be appearing commercially soon).

At least a generation of hard work and experimentation will be needed to
begin to uncover ways in which cybernetically centered educational
environments can be appropriately designed, built and implemented. In
fact, we must become accustomed to Information technology" as
representing a rapidly changing wave of potentials rather than a fixed
entity. Despite the fluidity and uncertainty that such a metaphor implies, I
hope that the very preliminary glimpses of near term potential exhibited
earlier in this paper support the clalm that a certain level of rational
optimism is in order. With full apologies to Roy Blount (1964), I counter
that no,

tba sampstar Is set just neither Ing se ilis whdeldold if
slosetha
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